Poisson em Apostas Esportivas

Como utilizar Poisson em apostas esportivas? Explicação detalhada

Como você sabe apostas esportivas é algo imprevisível, por isso o apostador analisa jogo e o estuda para tomar uma decisão que julga ser mais previsível. Há métodos e modelos que o ajudam a melhorar seu poder de julgamento, e um desses métodos é a distribuição de Poisson. Algumas pessoas acham Poisson muito complicado e difícil para entender, isso é verdade, mas o apostador sério não vai fechar olhos para algo que o beneficie, e a meu ver vale a pena fazer um esforço para entender algo que expressa a probabilidade de uma série de eventos ocorrer num certo período de tempo.

Poisson em apostas esportivas vai calcular probabilidades percentuais para cada resultado, assim você poderá ver a probabilidade do mandante vencer, do visitante, de dar empate, além de cálculos para Unders (menos) e Overs (mais) gols. Então, como você pode ver, Poisson é necessário para você que quer saber a frequência com o que o evento ocorre, e assim poderá encontrar apostas de valor.

Vou neste artigo tentar explicar tudo com calma e o máximo detalhado que puder, supondo que você não saiba absolutamente nada. Irei exemplificar as coisas usando algo que nos interessa, ou seja, futebol.

Primeiro, a equação de Poisson:Isso está um pouco confuso, mas acalme-se. Primeiro de tudo, utilizei Barcelona como exemplo na equação de Poisson porque eles tendem a marcar muitos gols. Agora, vamos supor que eles estão jogando em casa contra o Villarreal e queremos saber a probabilidade de cada resultado ocorrer. Para fazer isso a primeira coisa a se fazer é determinar a probabilidade do Barcelona marcar x gols.

Isso significa que aqueles pequenos x (um símbolo) que aparece 3 vezes na equação pode ser substituído por números. Então digamos que estou interessado ​​em calcular a probabilidade do Barça marcar 2 gols, então a equação se torna:Aposto que agora as coisas se tornaram um pouco mais claras para você. Sabe aquele símbolo estranho, o µ? Isso é um espaço reservado para a expectativa de gols do Barcelona. E como saber isso? Terei que explicar isso mais adiante, por enquanto vamos devagar. Vou ligar o número de gols a algo aleatório, como 2.59. Isso significa que nossa equação será:A equação está tomando uma cara. Agora podemos facilmente dividir o que temos em três partes: as duas primeiras são multiplicadas e depois divididas pela inferior. Os três pequenos componentes individualmente são:

  1.  –  2.592
  2.  –  e -2.59
  3.  –  2!

Agora vou falar de cada um deles. No primeiro (1) item, o pequeno número 2 acima de 2,59 significa “elevado ao quadrado”. Então, para este caso, se multiplica 2,59 por 2,59.

  1.  –  2.592 = (2.59 X 2.59) = 6.7081
  2.  –  e -2.59
  3.  –  2!

(Mas e se o número de gols esperado for 3 ou 4 e não 2? Basta uma calculadora científica para lhe ajudar. Você pode encontrar isso pesquisando por calculadora no Google ou abrindo a calculadora científica do Windows. Então multiplique o valor do símbolo µ, usado aqui por nós como expectativa de gols, pelo x, que no exemplo queremos saber sobre 2 gols do Barça. Se quiséssemos multiplicar por 3 e não por 2, você deveria digitar o valor do símbolo µ, apertar Xy e então calcular)
Voltando ao nosso cálculo e recapitulando, x é a probabilidade do Barcelona marcar 2 gols e µ é a expectativa de gols marcados e isso irei falar depois.

Falta o símbolo e e ele é uma constante matemática que pode ser trocado pelo valor 2.718281828459. Assim temos uma pequena equação, em que 2.718281828459 elevado ao potencial µ (-2.59). Então a conta 2.718281828459 x potencial de -2.59 = 0.07502, ou simplesmente:

Na calculado digite 2.718281828459. Multiplica esse valor por x^y (igual na imagem acima), digite -2.59 e calcule.

  1.  –  2.592 = (2.59 X 2.59) = 6.7081
  2.  –  e -2.59 = (2.718281828459 x potencial de -2.59) = 0.07502
  3.  –  2!

Nós estamos quase chegando lá.

Agora sobrou o item 3, e essa é a mini-equação “2!”Isso significa 2 fatorial. Isso pode parecer difícil, mas não é tanto.

Fatorial de 0: 0! (lê-se 0 fatorial)
0! = 1
Fatorial de 1: 1! (lê-se 1 fatorial)
1! = 1
Fatorial de 2: 2! (lê-se 2 fatorial)
2! = 2 . 1 = 2
Fatorial de 3: 3! (lê-se 3 fatorial)
3! = 3 . 2 . 1 = 6
Fatorial de 4: 4! (lê-se 4 fatorial)
4! = 4. 3 . 2 . 1 = 24

…e assim por diante. Não é difícil. Então nosso fatorial é o terceiro exemplo que eu dei aqui, nos dando a resposta de 2.

  1.  –  2.592 = (2.59 X 2.59) = 6.7081
  2.  –  e -2.59 = (2.718281828459 x potencial de -2.59) = 0.07502
  3.  –  2! = (2 X 1) = 2

Agora vamos voltar à equação, substituindo todos os símbolos pelos números que foram calculados.Então a probabilidade (P) do Barcelona marcar 2 gols é 0.2516. A conta (6.7081 X 0.07502) / 2 = 0.2516.

Acima, tudo o que eu fiz foi explicar como calcular Poisson em apostas esportivas para encontrar a probabilidade do Barcelona fazer 2 gols.

Espero que você tenha aprendido, porque usando este sistema é possível calcular a probabilidade do Barcelona de marcar qualquer quantidade de gols. Abaixo uma tabela da qualidade de gols usando este mesmo método:

Espero que você não tenha se perdido. Se ficou confuso para você, volte o texto que foi abordado e procure ler com calma para entender cada ponto. Apenas vá com calma e atenção para as coisas terem sentido.

Tudo que foi abordado acima, inclusive a tabela, é a probabilidade do Barcelona marcar gols. Mas estamos falando de apostas esportivas, então também precisamos fazer o mesmo com o Villarreal. O cálculo a ser feito é exatamente igual, teremos que encontrar a expectativa de gols do Villarreal (µ). Vamos dizer que é de 0.52.

Não acho necessário refazer toda explicação, então já vou colocar o resultado e uma tabela para adiantar.

Agora as coisas ficaram interessante, porque podemos a partir dessas duas tabelas calcular qualquer resultado que estamos pensando.

Qual a chance do Barcelona ganhar de 2-0?

Isso é Fácil saber. Observe a tabela do Barcelona, encontre o valor de 2 e veja probabilidade. Faça o mesmo com o Villarreal. Você quer encontrar Barcelona 2-0. Então 2 gols do Barcelona tem probabilidade de 0,2516, você multiplica 0,2516 por 0,5945, que é a probabilidade do Villarreal de marcar 0 gols. O resultado é de 0,1495762 e essa é a chance de acontecer 2-0.

Para encontrar o valor em percentual, basta dividir 1 pelo resultado para obter a porcentagem: (1 / 0,1495762) = 6.68.

Agora que temos o cálculo de Possion mostrando a porcentagem para 2-0, é só ir nas casas de apostas ver qual a odd que eles estão nos oferecendo para Barcelona 2-0. Se a casa está dizendo que a porcentagem de acontecer um 2-0 é maior do que a sua calculada, então você tem, segundo seus cálculos, algo de valor.

E como converter odds das casas de apostas em porcentagem?

É simples, divida 1 pela odd, depois multiplique por 100 o resultado. Por exemplo na odd 8.0.

(1 / 8,0) = 0,12
(0,12 x 100) = 12%
A odd representa 12% convertendo para porcentagem.

E o exemplo se segue para qualquer outro

Agora que você sabe como calcular Poisson, precisa aprender a calcular a expectativa de gols das equipes.

Como Calcular a Expectativa de Gols?

Essa é uma parte importantíssima. Calcular a expectativa de gols de cada equipe é importante para o sucesso e isso requer duas variáveis ​para ser comparadas: “força ofensiva” e “força defensiva”.

Para encontrar a força ofensiva, você precisa de resultados para saber o número médio de gols marcados por cada equipe, tanto em jogos como mandante ou visitante. Pegue o número total de gols marcados pelos mandantes e o número total de gols marcados pelo visitante. Vamos usar como exemplo números da temporada 2017/18 do Campeonato Espanhol:

  • 567 gols foram marcados pelos mandantes nos 380 jogos: (567 / 380) = 1.492 gols por jogo
  • 459 gols foram marcados pelos visitantes em 380 partidas: (459 / 380) = 1.207 gols por jogo

É preciso saber a média de gols marcados como mandante e visitante de toda liga, porque isso ajudará na avaliação da força ofensiva de cada time.

Depois de saber isso é necessário descobrir a força defensiva, que é essencialmente o inverso dos números acima. Então, o número médio de gols concedido pelos mandantes é de 1.207, enquanto que os visitantes concedem 1.492 gols. Agora você precisa calcular a média de gols marcados pela equipe.

Agora um exemplo. O time A marcou 35 gols em casa na última temporada em 19 jogos, isso equivale a 1,842 gols em média. A média total dos mandantes foi de 1.492, que lhe dá uma força ofensiva de 1.235. O cálculo foi:

Dividir 35 por 19 = 1.842 
Dividir 567 por 380 = 1.492 
Dividindo 1.842 por 1.492 = 1.235 (a força ofensiva)

Agora precisamos calcular a força defensiva do time B. O número de gols sofridos fora de casa pelo time B foi de 25 em 19 partidas, que dá 1.315. Então se divide esse número pela média total de gols sofridos pelos visitantes, 1.492. O resultado é uma força defensiva de 0.881.

Com esses números em mãos é possível calcular a quantidade de gols que o time A provavelmente marcará contra o B, multiplicando sua força ofensiva pela força defensiva do Time B. Ficando assim:

1,235 x 0,881 x 1,492 = 1,623.

E para calcular gols do time B?

Se usa a mesma fórmula. Multiplica a média da força ofensiva do time B pela força de defesa do time A, multiplique também a média de gols marcados pelos visitantes fora de casa.

Time A sofreu 14 gols em 19 jogos = 0,736
Time B marcou 20 gols em 19 jogos = 1,052

1,052 (força ofensiva time B) x 0,736 (força defensiva time A) x 1,207 = 0,934. 

Aprendeu a calcular expectativa de gols? Então basta utilizar o resultado da expectativa de gols para substituir o símbolo µ na equação de Poisson.

Ainda precisa de ajuda com Poisson em apostas esportivas ou encontrou algum erro no texto? Sinta-se livre para enviar uma mensagem na caixa de diálogo abaixo.

Última atualização

Deixe um comentário

Your email address will not be published. Required fields are marked *

WhatsApp chat